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1    Introduction 

This workshop is the latest example of steadily increasing work and results in the 
area of propositional satisfiability over the last few years. The following recent events 
attest to this rising interest in the subject. There have been Satisfiability competitions 
in Paderborn and FAW (Ulm), Germany; Rutgers University (DIMACS), the United 
States; and Beijing, China. There have been two DIMACS workshops on satisfiability 
including one organized by Selman and Kautz and one organized this year by Gu, Du, 
and Pardalos. Last year, a Boolean symposium was organized by Golombic as part of 
EURO 14 in Jerusalem, and Boolean sessions within OR conferences such as EURO, 
INFORMS and the Symposium on Math Programming have become common. Books 
by Kleine Büning, Truemper, and Hooker either have appeared or are due to appear 
soon. A comprehensive survey on satisfiability algorithms, by Gu, Purdom, Franco, 
and Wah, should appear soon. Recently initiated major projects include a new book 
on satsfiability algorithms, an IEEE tutorial on satisfiability, and a special issue of 
the Communications of the ACM on satisfiability algorithms. 

Although quite a large body of results on the subject had been obtained before 
the late 1980's, there are perhaps two main reasons for the sudden entry into the field 
of extremely good talent and the subsequent explosion of new results; one of these 
has to do with special applications and one with theoretical aspects of satisfiability. 

On the applied side, a growing number of companies seem convinced that a good 
understanding of satisfiability algorithms will help their competitive standing. This 
may be due to the success of certain non-resolution-based algorithms, such as the 
local improvement algorithms of Gu, Selman and others, on a host of military and 
industrial applications. While not yet explainable analytically, the performance of 
such algorithms on satisfiable formulas has been reported to be surprisingly good 
even when such formulas have thousands of variables. Moreover, it seems that for 
some jVP-complete problems, such as the Steiner Tree problem, transforming to a 
satisfiability problem and solving with one of the new satisfiability algorithms can be 
more effective than solving the problem in the original domain. Finally, chip design 
diasters, such as the floating point failure of Pentium processors, point out the need 
for satisfiability-based tools to aid in the verification process. Indeed, Randy Bryant 
has recently shown that the floating point problem could have been discovered if tools 
already developed by him had been used by Intel. 

On the theoretical side, two major questions concerning the lengths of resolution 
proofs were at least partially answered in the late 1980s and early 1990's. One series 
of papers authored by Tseitin, Galil, Haken, Urquhart, and Chvätal and Szemeredi 



reached a milestone with the classic 1988 result that all resolution proofs on nearly all 
randomly generated unsatisfiable formulas of const ant-width are of exponential length 
if the ratio of clauses to variables is held constant. Simultaneously, another collection 
of papers by Chao, Franco, Chvätal, Reed, Frieze, and Suen showed that a Davis- 
Putnam variant is effective on nearly all random formulas of constant-width if the 
ratio of clauses to variables is not too high. Such results, although startling, raised 
more open questions such as the following. Why can't Davis-Putnam algorithms 
be proven effective for random formulas with close to a 50 percent chance of being 
satisfiable? Can it be shown that resolution proofs must be large for most random 
formulas even if the ratio of clauses to variables grows? Is there a 0-1 (threshold) law 
governing the probability that a random formula of constant-width is satisfiable? Do 
random formulas of constant-width usually belong to a special polynomially-solved 

subclass of satisfiability (such as q-SAT). 

Recent attacks on these and other questions have yielded a steady stream of 
improvements to our understanding of resolution proof size and the threshold phe- 
nomenon. Recently, Beame and Pitassi developed new techniques to show that the 
result of Chvatal and Szemeredi can be extended to growing ratios of clauses to vari- 
ables (up to a point). Several recent papers involving de la Vega, Motwani, Spirakis, 
Kamath, Dubois, and others introduced techniques that have reduced the known up- 
per limit on the satisfiability threshold to somewhere near where it is suspected to 
be. Special polynomially solvable subclasses of satisfiability that are based on LP 
relaxations have recently been shown by Schlipf, Annexstein, Franco, and Swami- 
nathan to be subsumed by Davis-Putnam algorithms and, in a probabilistic sense, 
these classes have been shown by Franco and VanGelder to be considerably smaller 
than the class of constant-width formulas solved in polynomial time by matching. 
Hierarchies of fixed-parameter-tractable classes of constant-width formulas have been 
defined by Gallo, Heusch, Speckenmeyer, Dalai and others, and surprising progress 
on the complexities of such classes has been made by Schlipf, Franco, Goldsmith, 
Swaminathan, and Speckenmeyer. Also of interest are the series of improvements by 
Monien, Speckenmeyer, Schiermeyer, and Kullmann to upper bounds on the com- 
plexity of Davis-Putnam style algorithms given constant-width formulas (now down 

to approximately 0(1.5")). 

On the experimental side, some old techniques are beginning to be applied to sat- 
isfiability with promising results. Notable among these are the Lagrangian techniques 
of (independent and different) vanMaaren, Nobili, and Wah. 

With this exciting backdrop of activity, the organizers chose to have a small work- 
shop, lasting an entire week, of representatives of the main areas identified above. 
There were only four or five 45 minute talks a day with plenty of time to get into 



details. There was also plenty of time for informal one-one and group discussions 
afterwards. The idea was to have all the participants know each other much better 
after the workshop than before. 

The body of this report explains what was learned, and contains the personal 
reactions of the author of this report. Appendices include open problems, the an- 
nouncement, the program, and abstracts. Much of the information presented here 
can be found on the World Wide Web at the URL: 

http://www. ece.uc. edu/~franco/sat-workshop-aflermath.html 

2    Results 

Results are presented by category, following threads of research activity. The constant- 
width model used below is a parameterized probability distribution on satisfiability 
formulas in Conjunctive Normal Form (CNF) described as follows: a random formula 
contains m clauses independently chosen from the set of all ^-literal clauses that can 
be composed from n variables (no two literls are the same or complementary). The 
random-width model is described as follows: a random formula contains m clauses in- 
dependently constructed from'a set of n variables and their complements (2ra literals) 
where each literal exists in a given clause with probability p, independently of the 
rest. When we say Davis-Putnam style algorithms we mean algorithms incorporating 
splitting and possibly other rules for variable elimination found in [8]. Sections are 
ordered according to the personal taste of the author. 

2.1    0-1 threshold for random constant-width formulas 

Early work [4] on the probabilistic analysis of satisfiability algorithms with respect to 
the constant-width model revealed the probability that a random formula is satisfiable 
tends to 0 if the ratio m/n > -l/log2(l - 2~k). If k = 3 this is about m/n > 5.19. 
The result is simple to obtain and has been rederived many times. The idea is to find 
an expression for the expected number of satisfying truth assignments for a random 
formula and then find the conditions for which that expectation tends to 0. Since the 
expectation is an upper bound on the probability that a random formula is satisfiable, 
these conditions also apply to the probability that a random formula is satisfiable. 
Unfortunately, the variance of the number of satisfying truth assignments is too large 
for the above bound to be tight. 



Later work [2, 3, 5] showed that Davis-Putnam like algorithms with no or limited 
backtracking can find a truth assignment satisfying a random formula with probability 

tending to 1 if 

"^■«(^Hifr)-1' for4^401 

™/"<-125(^)"(^)(T)- for3^; 

m/n < 3.003,    for k = 3. 

These results plus the simple result cited above have left an irresistable gap of roughly 
2k/k < m/n < 2k where it is not known even whether the probability that a random 
formula is satisfiable tends to 0 or 1, let alone whether any algorithms are efficient in 

a probabilistic sense. 

Recent work by several groups has attacked the gap from above for k = 3. In 
the span of a little over a year, it has fallen from 5.19, to 5.01, to 4.75, and now to 
4.64. The techniques used to derive the last result promise to settle the question from 
above, once and for all. The idea, shared by two groups, is to lexicographically order 
satisfying truth assignments and count the subset beginning with a particular kind 
of assignment. If the subset is empty, then there are no satisfying truth assignments 
for the given formula. Since the subset is very small and has a low variance, the 
expectation of its size is a tight bound for the probability that a satisfying assignment 

exists. 

Representatives from both groups were invited to the workshop. One agreed to 
come but at the last minute could not obtain the funding to do so. Therefore, Goerdt 
presented these results at the workshop. 

We remark that in 1991 Goerdt and Chvätal and Szemeredi showed that there is 

a 0-1 threshold for k = 2 at m/n = 1. 

2.2    Lagrangian methods 

Lagrangian methods have recently been applied to satisfiability. Two papers pre- 
sented at the workshop are concerned with such relaxations. The general goal is to 
introduce quadratic cuts which, in one case (vanMaaren), leads to better approxima- 
tions for the solution space of LP formulations of satisfiability and, in the other case 



(Nobili), for the maximum satisfiability problem, leads to computations of approxi- 
mations to LP optima that are faster than applying the simplex method. 

The use of Lagrangian methods is outlined as follows. Let AT be^ the clause- 
variable incidence matrix associated with formula T. That is, element Af- has value 
1 if literal Xj is in the ith clause, -1 if literal Xj is in the ith clause, and 0 if neither 

literal Xj nor literal Xj are in the ith clause. Let u{A) be the vector such that the ith 

component is the number of -l's in the ith row of A. Let en be the n-vector of all 
l's. Then the satisfiability problem may be formulated as 

Äz>en-u(Ä),      z€{0,l}n, 

and the maximum satisfiability problem may be formulated as minimize cTx subject 

to 

m-\-n [A  I}x>em+n-u([Ä  /]),      *G{0,1} 

where c is the vector of dimension n + m whose first n elements are 0 and whose 
remaining elements are 1; £ is the vector of dimension n + m whose first n elements 
are z, above, and whose remaining elements "measure" which clauses are satisfied; 
and / is the appropriate identity matrix. 

The relaxation for maximum satisfiability considered by Nobili is 

max{L(A) = min{(cT - XT[Ä  I))x + AT(e„+m - u{[Ä  /]))}}, 
A x 

where A is an m dimensional vector of positive reals. 1(A) is an approximation for cTx 
that bounds it from below. A A can be built iteratively to get a good approximation: 
at iteration i, the aim is to find the A that maximizes L for a row-submatrix of a 
modified A (see below) then add violated constraints and continue the process. In 
general, it is not easy to extend the A that is optimal at iteration t to a A that 
is optimal at iteration t + 1. In fact, the non-zero elements of the optimal A for 
iteration t may be completely different from those of the optimal A for iteration t + 1. 
However, Nobili has noticed some conditions under which it can be done easily (that 
is, a new A and additional constraints can be constructed by inspection instead of 
by solving a linear programming relaxation). Such tests may be added to speed up 
existing simplex-based solutions borrowed from the Set Covering problem. We note 

that the constraints added by Nobili aim toward the logical completion of A.   The 



logical completion includes A and all pairwise "resolvents"^ derived from rows of A. 
The logical completion of A is usually much bigger than A. Currently, not enough 
experiments have been performed to ascertain the effectiveness of these results. 

The relaxation for satisfiability considered by vanMaaren Js more complex. Let 
A be defined for CNF formula T. Let C^ be the ith row of A. Let Pt be the set of 
integers representing column numbers of A for which Is exist in C;. Let Ni be the set 
of integers representing column numbers for which -Is exist in C;. Define 

Wi{x) = 1-E^-^(1- XJ),    for - oo < s < 1. 
kePi jeNi 

Define   

1 + vl + e 

where e is a parameter depending only on clause length. Define 

m 

**{x) = Q2(l-Aei(wi{x))y)1''/m, 
i-l 

where r < 0 is a parameter and e,- = tj if the number of non-zero entries in d 
and Cj, i ^ j, is the same. It has been shown that there exists a threshold hjrer, 
depending only on countable properties of T and the e and r parameters, such that 
$^(t) > hjr^r if and only if T is satisfied at t. Thus, the inequality ^(x) > hj:^r 

defines a region separating the satisfying and non-satisfying assignments of T. For 
the sake of computational tractability, vanMaaren replaces $ with its second order 
Taylor expansion around the center c of the unit cube (xi = 1/2, 1 < i < n). 
The aim is to find, for some parameter values, a good pair of thresholds hn and 
h„ such that (ß(iß) < hn defines a region containing no satisfying truth assignments 
and <f>(ip) > hs defines a region containing only satisfying truth assignments, where 
<t>(ij}) = $(c + V>) — $(c) and $ is the second order Taylor expansion of §T. 

The relaxation proposed by vanMaaren can be used to determine satisfiability for 
given formulas. In this workshop vanMaaren shows that his geometric interpretation 
can possibly be used to develop intuition about the properties of formulas that relate 
to "hardness." For example, 3-CNF formulas with the property that the number of 
occurrences of positive literals for each variable are about equal to the number of 
occurrence of negative literals yield regions that are nearly spherical and centered at 
the center of the unit cube: that is, they present little discriminating information. 
Such "sign balanced" formulas are thought to be very hard. 



2.3 Probabilistic analysis of Davis-Putnam variants 

Although most current research activity on the probabilistic analysis of satisfiability 
algorithms is related to the constant-width model, a string of results spanning about 
10 years, mainly due to Purdom and colleagues, has revealed the average performance 
of satisfiability algorithms with respect to the random-width model. 

Early work on this model showed that most random formulas are trivial. Thus, if 
p > ln(m)/n, a random assignment satisfies a random instance with high probability 
and if p < ln(m)/(2n), random formulas have at least one null clause (and therefore 
are unsatisfiable) with high probability. In between, a Davis-Putnam variant finds 
satisfying truth assignments, when at least one exists, with high probability. 

Surprizingly, finding a collection of algorithms that, when run simultaneously have 
polynomial average time behavior, proved very hard. Interest in such results is due 
to the fact that, in practice, one pathological formula (requiring an extraordinary 
amount of time) out of a large sample of formulas can be intolerable; a polynomial- 
time average result suggests this won't happen. Until recently, no such result was 
known for much of the parameter space of the random-width model. As reported in 
this workshop, Purdom has found a collection of algorithms that succeeds. 

The collection consists of one previously studied algorithm and a new one. The 
new algorithm is another variant of the Davis-Putnam procedure. Fix any truth 
assignment t to the variables of the formula, and recurse on the following as long 
as necessary: locate a clause C — {li,k, ■■■Jx} (where U, 1 < i < x are literals) 
that is falsified by t, split on /x, under lx — false split on /2, under h = false and 
l2 = false split on /3 and so on up to lx. Purdom shows that the algorithm outlined 
above has polynomial average-time complexity when p > ln(ra)/n. Previously, it had 
been shown that a restricted form of resolution provides polynomial-size proofs, on 
the average, when p < ln(ra)/n. 

2.4 Fixed-parameter-tractable hierarchies of SAT classes 

Several hierarchies of successively "harder" satisfiability classes have been proposed. 
Recently, Heusch proposed such a hierarchy based on pure implication logic. Pure 
implication formulas are defined recursively as follows: 

1. A variable is a pure implication formula. 

2. If Tx and JF2 are pure implication formulas then {T\ -» Ti) is a pure implication 

formula. 
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Eliminating parentheses on right to left associativity, a pure implication formula can 
be written T\ ->■ Ti -» ... ->■ Tp ->■ 2 where 2 is a variable. We call the z variable of 
a formula the right-end variable. 

The satisfiability problem is trivial for a pure implication formula but the prob- 
lem of falsifiability is ^"P-complete even if all variables except the right-end variable 
occur at most twice in the formula, (note that this is obviously equivalent to a satis- 
fiability problem on CNF formulas constructed in a particular way from a given pure 
implication formula). Let k be the number of occurrences of the right-end variable. 
Heusch [6] defined a hierarchy of satisfiability classes based on pure implication logic, 
with parameter fc, and showed that the kth. level of the hierarchy can be solved in 
time 0(\F\k). Thus, level 1 is linear-time solvable, level 2 is quadratically solvable, 
and so on. A remarkable feature of the lower levels of the hierarchy is that they have 
extremely limited expressibility and yet these classes are incomparable with repect to 
other polynomial-time solvable classes such as 2-SAT, q-SAT, and SLUR. This feature 
might become a tool for investigating the hardness of formulas, both for satisfiability 
and other AA'P-complete problems. 

To use this feature effectively in this regard, we must better understand the com- 
plexities associated with each level of the hierarchy. In particular, there is noth- 
ing known that theoretically prevents the complexity of level k formulas from being 
0(2k\J:\c) where c is a constant. The paper presented by John Schlipf finds that level 
k of the hierarchy can be solved in 0{kk\F\2) time. Thus, Heusch's hierarchy is the 
first satisfiability hierarchy known to us that is fixed-parameter-tractable. This result 
may impact known complexities of hierarchies of problems analysed in the growing 
fixed-parameter-tractable literature. For some of these, the best known complexities 
are of 0(nk) where n represents the length of the input. The result also provides a 
better understanding of where to look for "borderline-hard" formulas. 

Heusch has looked at properties of pure implication formulas that lead to linear- 
time solutions. In his talk, he showed that if all subformulas of the type (u ->• (v -> 
w)) are forbidden, then the falsifiability problem can be solved in linear time. Other 
linear-time subclasses were presented as well. 

2.5    Upper bounds on the complexity of 3-satisflability 

An interesting thread of results concerns upper bounds on the complexity of cer- 
tain Davis-Putnam style algorithms for solving 3-satisfiability formulas. Notable 
progress over the obvious 0(2") complexity of simple backtracking was first achieved 
by Monien and Speckenmeyer [7] using the concept of autarkness. A partial truth as- 



signment t for a given subset L of complementary pairs of literals is autark in formula 
T if and only if for every clause C € T, if C contains at least one literal in L, then 
C is satisfied by t. The following two statements are obvious and lead to a 0(1.61") 
algorithm for 3-satisfiability. If a truth assignment t is autark, then all clauses in T 
containing at least one literal assigned a value by t are satisfied by t. If t is not autark 
in T then, in some clause, all literals assigned values by t are falsified. 

This result has now been improved by Schiermeyer. The algorithm is too com- 
plicated to state here. It is based on repeatedly selecting a shortest clause and then 
adding a number of tests and modifications to T which either add or remove clauses 
from T and remove literals from clauses in T. The reader is referred to the abstract 

for details. 

One key notion seems to be pure literal look ahead which is based on the following 
idea. Let C be a clause containing two literals xi and x2 and suppose that for all 
clauses C other than C, if x2 € C then xx G C. Then assign x2 the value true 
and the result is that xx is a pure literal in F. The above ideas have been used 
by Schiermeyer to reduce the upper bound to 0(1.57"). His contribution to this 
workshop is an improved analysis that brings the upper bound on 3-satisfiability 

complexity to 0(1.49"). 

Kullmann has also made an interesting contribution to this area with the intro- 
duction of blocked clauses. A clause C is blocked with respect to a formula T if it 
contains a literal x such that every resolvent of C with another clause on x is in some 
sense not interesting. Using blocked clauses, Kullman has obtained an 0(1.5045") 
upper bound for 3-satisfiability complexity. 

Perhaps the greatest value of this line of work is 1) the intuition that is developed 
from the study of many different ideas for choosing a variable to split on and the 
notion of blocked clauses; 2) the generalizations devised by Kullmann. 

2.6    Resolution proof length 

Finding bounds on the lengths of resolution proofs has a long history involving classic 
results by Tseitin, Haken, Urquhart, Chvatal, Szemeredi, Goerdt and others. Gen- 
erally, the results are negative: families of formulas are shown to require exponential 

length proofs. 

Urquhart studies the effect of symmetry rules on resolution proof length.   Let 
<r„(C) be the clauses obtained by applying a permutation TT on the variables of C to 
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each of the clauses of C. Suppose a clause C has been derived from a set of clauses 
C and crn(C) = C. Then crn(C) can be inferred as the next step in the derivation. 
This is the global symmetry rule. Suppose C is a clause derived from C and for every 
C eC used in the derivation of C aK{C) is also in C. Then <r*{C) can be inferred 
on the next step. This is the local symmetry rule. The symmetry rules can have 
a dramatic effect on resolution proof length in a variety of instances. For example, 
proofs on pigeon-hole formulas can be reduced from exponential to quadratic length. 
Moreover, these rules can be generalized by allowing complementation of literals as 
well as permutations. Urquhart shows that this extension of the symmetry rules is as 
powerful as extended resolution. That is, resolution with the global symmetry rule 
allowing complementation is p-equivalent to extended resolution. 

Van Gelder proposes a new pruning method to reduce the length of proofs. This 
method is designed to prevent refutation attempts that can not possibly succeed. 
The method is based on autarkness (see Section 2.5). The reader is referred to the 
extended abstract for details. 

Kleine Büning and Lettmann consider the question whether, for an arbitrary 
clause C in formula T, 7 \= C holds. This is often hard to determine. In their paper 
they investigate whether the hardness is due to structural properties of formulas 
or to the meaning of the formula: that is, whether, for a given formula J7, there 
exists an equivalent formula F of restricted length for which T' (= C and this can 
be determined quickly. The conclusion is that for all polynomials p and q, there 
exists a formula T such that, for every equivalent formula F with length less than 
^(l^l), there is a clause C for which the shortest resolution proof proving that C is a 
consequence of F requires more than pd^l) time. 

2.7    Polynomial time solvable subclasses of satisfiability 

Several polynomial-time solvable subclasses of satisfiability have been proposed. Among 
the more interesting are the Horn, extended Horn, balanced matrix, single lookahead 
unit resolution, and q-Horn formulas. An intriguing question is whether any of these 
classes comes close to what in some sense may be the largest easily definable subclass 
of satisfiability that is solved in polynomial time. For now we will call such a class 
of formulas p-dominant. The class of q-Horn formulas is thought to be p-dominant 
because of the following result due to Boros, Crama, Hammer, and Saks [1]. Let 
{vi,v2, ...,vm} be a set of Boolean variables, and Pk and iVfc, Pk D Nk = 0 be subsets 
of {1,2,..., m} such that the fcth clause in a CNF formula is given by Vi6p&u; VlGivfe ü;. 
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Construct the following system of inequalities: 

E a« + E I1 - a«) ^ Z'   (k = *'2' -'n)' and 

i€Pk i£Nk 

0<at<l,   (i = l,2,...,m). 

where Z e R+. If all these constraints are satisfied with Z < 1 then the formula is 
q-Horn. On the other hand, the class of formulas such that the minimum Z required 
to satisfy these constraints is greater than 1 + e, for any e > 0, is NP-complete. 

Franco and Van Gelder have investigated the possibility that one of the above 
classes is p-dominant from a probabilistic perspective. Under the constant-width 
model (k literals per clause), there are several Davis-Putnam style algorithms that 
almost always find satisfying truth assignments in polynomial time when m/n < 
c2k/k, c a constant. We would hope, then, that a random formula generated under 
this constraint would be, say, q-Horn with probability tending to 1. In fact we find 
that this can only happen if m/n < c/k2. Moreover, the same can be said of the other 
classes. The reason is that, for each class, there are forbidden structures, typically 
"cycles" among clauses, and, since the model is symmetric, when cycles begin to be 
generated in preponderance (that is, when m/n > c/k2) so do forbidden ones. 

Equally surprising is a random formula can be solved in polynomial time by the 
following matching algorithm if m/n < c. Create a bipartite graph with vertices on 
one side representing clauses and on the other variables. Put an edge between two 
vertices on opposite sides if the corresponding variable is in the corresponding clause 
regardless of polarity. Find a maximum matching for the graph. If the matching cov- 
ers all clause-vertices then, for each clause-vertex, assign the variable corresponding 
to the vertex adjacent to it in the matching the value which satisfies the corresponding 

clause. 

The above results show that previously studied classes are, in some probabilistic 
sense, not p-dominant because a seemingly wide range of random formulas that can 
be solved easily by even a simple matching algorithm. These results have not yet 

been written up. 

Another interesting question concerning polynomial time solvability is, given a 
CNF formula T, what is the largest subset of clauses of T that is renamable Horn (or 
q-SAT, etc.). Identifying such subsets may have an impact on the time required to 
solve T. Boros presented an algorithm for finding a non-optimal renamable Horn set 
C CJ7 such that \C\ is no less than about 60% of the size of the optimal subset. Boros 
formulates the problem as a pseudo-Boolean function in variables si,...,sn where s,- 
is 1 if the literals of the z'th variable are switched (or renamed) and 0 otherwise. The 
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maximum value of this function is the maximum size of a renamable Horn subset of T. 
Moreover, the value of the function given a real valued vector q for the 5,- variables 
is always less than the value given a binary vector and that binary vector can be 
derived from q by a simple linear-time rounding procedure. Thus, the continuous 
solution to the psuedo-Boolean function is less than the optimum size of a renamable 
Horn subset of clauses. The problem can alternatively be formulated as an Integer 
Programming problem on Si,...,s„ such that the optimum value of the continuous 
relaxation of this IP is always at least the optimum size of a renamable Horn subset 
of clauses. Hence, one can find the optimum solution to the LP relaxation, if this is 
small enough, use q = (|,|,...,|) and round to determine an approximate subset, 
otherwise, use as q the optimum solution to the IP relaxation and round. 

2.8    Partially defined Boolean functions 

Partially defined Boolean functions (pdBF) have applications in a number of areas 
of computer science and operations research. An interesting question is whether a 
given pdBF can be completed to a total Boolean function that is a polynomial-time 
subclass of satisfiability. It is known that a pdBF can be completed to a Horn formula, 
if possible, in polynomial time. Such a completion is characteristically unbalanced 
among the input vectors that satisfy and those that do not. Looking for more balanced 
completions, Eiter introduces special kinds of Horn formulas, namely double Horn and 
bi-dual Horn formulas. He then derives certains properties of these classes related to 
the completion problem. The reader is referred to the abstract for details. 

2.9    Multispace search 

Gu presented his ideas on the concept of Multispace algorithms. The following de- 
scription is taken from our joint survey paper. 

The goal of traditional optimization algorithms is to find an assignment of val- 
ues to variables such that all constraints are satisfied and performance criteria are 
optimized. An optimization algorithm changes values and tries to find the "goal 
values." Traditional value search methods do not provide structural information to 
the search problem. It is difficult for them to handle difficult problems, e.g., local 
minimum points, in a hard search problem. In multispace search, any component 
related to the given search problem forms a new class of search space. For a given 
search problem, we define variable space, value space, constraint space, objective 
space, parameter space, and other search spaces. The totality of all the search spaces 
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constitutes a multispace. During the search process, a multispace search algorithm 
not only changes values in the value space. It also scrambles across other spaces and 
dynamically reconstructs the problem structures that are related to the variables, 
constraints, objectives, parameters, and other components of the given search prob- 
lem. Only at the last moment of the search, the "reconstructed" problem structure 
is replaced by the original problem structure, and thus the final value assignment 
represents the solution to the original search problem. 

3    Personal Comments 

The organizers believe the workshop was a success. The total number of attendees was 
25, about 2/3 of whom came from Western Europe and the rest from North America. 
Most participants stayed for an entire week. Speaking for myself (and certainly similar 
statements are true for most attendees), I enjoyed the unhurried, lengthy, informal 
technical and personal conversations with several colleagues, especially vanMaaren, 
Urquhart, Goerdt, Gu, and Mitchell. 

The workshop came only six weeks after a DIMACS workshop on satisfiability. 
The two complemented each other quite well: there was only a small overlap in 
results presented; the pace of each was different; and, since the composition of each 
was different, research thrusts were somewhat different. 

In the previous section I have reported interesting research thrusts represented 
in the Siena workshop. Some of these seem very promising. I most enjoyed the 
Lagrangian papers of Nobili and vanMaaren. Dave Mitchell's talk, on a topic very 
similar to our own SLUR paper, was outstanding (I did not report on this above 
because he has not yet finished writing up his results). John Schlipf gave an excellent 
account of our work on fixed-parameter-tractable hierarchies for satisfiability. In 
fact, the spectrum of polynomial-time solvable subclass results, including the work of 
Boros, Heusch, Gallo, Mitchell, and others, has fascinated me before and during the 
workshop (particularly because of the close relationship of some of this work to Linear 
Programming). Work on resolution proof length continues to confirm its limitations 
from a complexity perspective. However, the work of Urquhart, Van Gelder, Kleine 
Büning, and others suggests what needs to be added to resolution to make it much 
faster in some applications. Finally, I want to comment that I enjoyed Eiter's talk on 
partially defined Boolean formulas, mainly because it was so well presented. 

Finally, through my contact with Gu, I will almost certainly be migrating some- 
what towards industrial applications of satisfiability and the study of algorithms that 
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are most suitable in that domain. 
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Workshop on Satisfiability 
Certosa di Pontignano 

Universita Degli Studi Di Siena 
Siena, Italy April 28 - May 3, 1996 

Open Problems 

Hans Kleine Büning 

All Literal Horn 

INSTANCE: Satisfiable Horn formula 7. 

QUESTION: Determine {/ literal \T |= /}. 

The set {/ literal \T |= 1} obviously can be calculated in time 0(\F\ * n), where |^| 
is the length of the formula and n is the number of variables. 

The set of positive literals (variables) {x variable \T \= x} can be determined in time 
0(1^1) using unit resolution. The problem arises with negative literals. 

The unique-satisfiability problem for Horn formulas is a special case and known to 

be solvable in linear time. 

Now the question is whether there exists an algorithm solving the Literal Horn prob- 

lem in time less than 0(\!F\ * n). 

Endre Boros 
Given a CNF expression C = {Cu C2,..., Cm}, define L(C) = {u\ both u and ü occur in C}. 

Prove or disprove the following conjecture: if \d f*l Cj\ = 1 for all i ^ j, then there 
exists a« G L(C) with exactly one occurrence in C. 

Thomas Eiter 
The following restriction (IMUNSAT) of the classical satisfiability problem is cur- 

rently open: 
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Intersecting Montone UNSAT 

INSTANCE: A set C of clauses such that each clause is either positive (i.e., consists 
entirely of positive literals) or negative (i.e., consists entirely of negative literals) and 
for each positive clause Ci and negative clause C2 of C, there exists an atom u such 

that u is in C\ and ü is in C2. 

QUESTION: Is C unsatisfiable? 

Reference: Eiter k Gottlob, Identifying the minimal transversals of a hypergraph 
and related problems, SIAM J. Computing, 24(6): 1278-1304, 1995. 

This problem is the (un)satisfiability variant of a number of equivalent (under poly- 
nomial time transformation) problems in different areas of operations research and 
computer science. A number of people have considered essentially this problem in 
papers, including M. Fredman, T. Ibaraki, D.S. Johnson, L. Khachiyan, R. Khardon, 
E. Lawler, J. Lenstra, H. Mannila, Ch. Papadimitriou, K.-J. Räihä, A. Rinnooy Kan, 
M. Yannakakis, to mention some of them. The problem (in equivalent formulations) 

has been open for more than 15 years. 

There is a yet more restricted version of IMSAT, which is as hard as the general 

case. 

Symmetric Intersecting Monotone UNSAT (SIMUNSAT) 

INSTANCE: Restriction of IMSAT to instances C where the negative clauses are 
precisely all clauses C- such that C- = {ü : u G C+} for some positive clause C+ G 
C. (By this restriction, nonempty positive clauses of C are mutually intersecting.) 

QUESTION: Is C unsatisfiable? 

Although this problem statement seems easy, it appears to be difficult to come up with 
a polynomial time algorithm. What is known to date is that the problem is most likely 
not coA/'P-complete, due to the recent quasi-polynomial time algorithm of Fredman 
and Khachiyan for the positive dualization problem (see below). This algorithm 
implies that IMUNSAT and SIMUNSAT can be solved in quasi-polynomial time, 
as well as all problems mentioned below. 

There are a number of problems that are equivalent to SIMUNSAT (under poly- 
nomial time transformation). The problems are in different areas of logic, operations 
research, and computer science. We describe here some of them. (For a more detailed 
account, see the quoted paper of Eiter and Gottlob.) 

Problems Equivalent to IMUNSAT and SIMUNSAT 
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A hypergraph ri is a pair (V,£) of a finite set V and a family £ = {£1,..., £"m} of 
finite subsets 5,- C V (called edges). A hypergraph is simple, if it has no pair of edges 
Ei, Ej such that E, is properly contained in Ej. A simple hypergraph is also known 

as a Sperner family. 

Say that a simple hypergraph (V, S) is saturated if adding any further edge violates 
the property of being simple, i.e., (V, £ U {X}) where X C V, is not simple. 

The following problem is equivalent to SIMUNSAT: 

Simple Hypergraph Saturation (SIMPLE-H-SAT) 

INSTANCE: A simple hypergraph % = (V, £) on vertices V = {vu ..., vn}. 

QUESTION: Is % saturated? 

A variant of this problem is that, besides being simple, the hypergraph must be (and 
remain) in addition intersecting, i.e., each pair of edges Ei, Ej has nonempty intersec- 
tion. This problem, known as Maximal Hypergraph Clique, has been presented 
by D.S. Johnson as an open problem in a lecture "Open and Closed Problems in 
NP-Completeness" at the Symposium and Summer School "AfP-completeness: The 
First 20 Years", Erice, Sicily, 1991. (Actually, Johnson presented a spoiled version of 
the problem there (personal communication) which is clearly solvable in polynomial 

time). 

A transversal (or hitting set) of a hypergraph ri = (V, S) is a subset T C V such 
that T meets each edge in at least one vertex, i.e., \T n Ei\ > 1, for all Ei in £. 
The transversal hypergraph of % is the hypergraph Tr(H) = (V, F) such that T 
is the family of all minimal (w.r.t. inclusion) transversals of ri (see C. Berge's book 
Hypergraphs, North-Holland 1989, for a detailed study of the transversal hypergraph). 

The following problem is equivalent to SIMUNSAT: 

Transversal Hypergraph (TRANS-HYP) 

INSTANCE: Two hypergraphs Q = (V,£oo) and U = (V,£g) on vertices V = 

{vu...,vn}. 

QUESTION: Does U = Tr{Q) hold? 

This problem has immediate applications e.g. in Boolean logic and in the context of 
model based diagnosis. 

Equivalent to this problem is the positive dualization problem: 



20 

Positive Dualization (POS-DUAL) 

INSTANCE: Positive Boolean CNFs £ and T. 

QUESTION: Does T represent the dual of the function represented by £1 

A variant of this problem is the one where £ is a positive CNF and T is a positive 
DNF, and we ask whether £ and T represent the same Boolean function. Fredman 
and Khachiyan, On the Complexity of Dualization of Monotone Disjunctive Normal 
Forms, Technical Report LCS-TR-225, Dept. of Computer Science, Rutgers Univer- 
sity, 1994, have shown that POS-DUAL can be solved in quasi-polynomial time, 
i.e., in time 0(mo(los(m))) where m is the size of the input. See also Bioch and 
Ibaraki, Complexity of dualization and identification of positive boolean functions, 
Information and Computation, 123 (1995). 

Next we consider problems equivalent to SIMUNSAT from database theory. 

FD-Relation Equivalence 

INSTANCE: A relation instance H (collection of tuples) and a set F of functional 
dependencies in BCNF, both on a set of attributes U. 

QUESTION: Is 11 an Armstrong relation for F, i.e., do on H hold exactly the 
dependencies represented by F1 

A set F of functional dependencies on a set of attributes U is in Boyce-Codd Normal 
Form (BCNF), if in every nontrivial functional dependency X -)■ Y logically implied 
by F the left hand side X is a minimal key, i.e., a wrt. inclusion minimal subset X 
of attributes that determines all other attributes in U. 

Also a variant of the key problem is equivalent to SIMUNSAT: 

Additional Key (for relation instances) 

INSTANCE: A relation instance 11 on attributes U, a set K of minimal keys for 11. 

QUESTION: Is there a minimal key for 11 (i.e., the set of functional dependencies 
F that hold on R) which is not contained in K1 

Notice that the key problem for relation schemes (instead of relation instances), where 
the input is a set F of functional dependencies on U, is polynomial. 

We nect describe a problem from the area of reliability and distributed computing 
which is equivalent to SIMUNSAT. 
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A coterie C is, using hypergraph terminology, an intersecting hypergraph. 

A coterie C dominates a coterie C if they are different coteries on the same set of 
vertices and for every edge E eC there is an edge F € C such that F C E; a coterie 
is non-dominated (ND) if there is no coterie C that dominates C. Nondominated 
coteries have been introduced by Garcia-Molina k Barbara, How to assign votes in 
a distributed system, JACM 32 (1985); they have been studied extensively e.g. by 
Ibaraki and Kameda, A theory of coteries: Mutual exclusion in distributed systems, 
IEEE Trans, on Parallel and Distributed Systems, 4 (1993). 

The following problem is equivalent to SIMUNSAT: 

Nondominated Coterie (ND-COTERIE) 

INSTANCE: A coterie C. 

QUESTION: Is C nondominated? 

It is known that nondominatedness coincides with the property that C is a self- 
transversal hypergraph, i.e., a hypergraph % is identical to its transversal hypergraph. 
This yields the following problem equivalent to SIMUNSAT, which is a restriction 
of TRANS-HYP: 

SELF-TRANSVERSALITY (SELF-TRANS) 

INSTANCE: A hypergraph U. 

QUESTION: Is U self-transversal, i.e., does U = Tr{H) hold ? 

There are other problems that are equivalent to SIMUNSAT, which have been 
recently identified in the area of propositional knowledge representation; see the pa- 
pers by Khardon, Translating between Horn Representations and their Characteristic 
Models, J. Artificial Intelligence Research 3, 1995, and D. Kavvadias, Ch. Papadim- 
itriou and M. Sideri, On Horn Envelopes and Hypergraph Tranversals, ISAAC-93 
Proceedings, LNCS 762. 

A polynomial time algorithm for any of the problems above would be highly appre- 
ciated. 

John Franco 
Does there exist an algorithm for verifying that a random 3-SAT formula is unsatisfi- 
able and that has polynomial time complexity with probability tending to 1 when m/n 
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is any constant greater than 5? or even when m/n grows but lim«,,,,-».«, m/ns/7 = 0? 
or even when limm,„_>.oo m/n2~c = c for some small e > 0 and constant c? 

Oliver Kullman 
Let T be a CNF formula. Define T* to be an extension for T if for all subsets S 
of clauses of T that are satisfiable, S U T* is also satisfiable. If JF is not satisfiable, 
define CompsiJ7) to be the minimum value of CompRES(^U .F") such that JP is an 
extension for T\ define CorapRBs(£) to be the minimum n such that Q hRES 1. 

Is CompsiF) polynomially bounded? 

Let V = {T£ CLSlVcuCj&i&Ci n Cj ± 0}. 

Is CompREs(F)F€V polynomially bounded? 

Consider any feasible notion of redundant clauses with respect to sat-equivalence (like 
blocked clauses). Which is better: adding such clauses or deleting them? 

Ewald Speckenmeyer 
Let X(n,k)m be the set of all CNF formulas containing n variables and m clauses, 
where each clause has exactly k literals. Let f(n,m,k) be the minimum number of 
clauses which have to be removed from formulas in X(n, k)m in order to make them 

satisfiable. 

What is f(n,m,k)l 

By experiment, /(500,5000,3) is approximately 162. 

Alasdair Urquhart - Multilated Chessboards 

Consider the following well known puzzle: given a chessboard with two diagonally 
opposite squares removed, can you cover it with dominoes each of which can cover 
two adjacent squares? The answer is of course negative because any domino must 
cover a black square and a white square, and diagonally opposite squares have the 

same colour. 

This puzzle, generalized to a 2n by 2n board, can be formalized as an unsatisfiable 
set of clauses. We use variables Dxy to symbolize: "Square x and square y are covered 
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by a domino." For each square x, we have a positive disjunction saying that it must 
be covered by a domino that also covers an adjacent square, and a set of negative 
disjunctions saying that x cannot be covered by more than one domino. This set 
of clauses has size quadratic in n. Problem: show that these sets of clauses require 
super-polynomial size resolution refutations. 

References: 

"Automation of Reasoning," edited by J. Siekmann and G. Wrightson, Vol. 2, pp. 
157-8, Springer-Verlag 1983. 

"Short proofs for tricky formulas," by B. Krishnamurthy, Ada Informatica, Vol. 22 
(1985), pp. 253-275. 

Allen Van Gelder 
Determine the complexity of Davis-Putnam style algorithms that are enhanced by 
2-closure or similar processing of binary clauses. Where do subsumptions make an 
impact? 

The following two people have submitted open problems but existing descriptions 
have not yet been updated: Paul Purdom, Cosimo Spera. 
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Ewald Speckenmeyer 
Universität zu Köln 

Institut für Informatik 
49 221 470-5377/5378 
FAX:49 221 470-5387 

esp@informatik.uni-koeln.de 

John Franco 
University of Cincinnati 

Computer Science 
513-556-1817 

FAX:513-556-3417 
franco@franco.csm.cu.edu 

Hans Kleine Büning 
Universität-Gesamthochschule Paderborn 

Fachbereich Informatik 
49 5251 60-3360 

FAX: 49 5251 60-3338 
kbcsl@uni-paderborn.de 

Giorgio Gallo 
Universita di Pisa 

Dipartimento Informat 
39 50 887-214 

FAX: 39 50 887-226 
gallo@di.unipi.it 

Workshop On The Satisfiability Problem 
April 29 - May 3, 1996 

Siena, Italy 

The opening session begins on April 29th at 9 a.m. and the closing session ends on May 
3rd at 1 p.m. 

Contact Address 
Mrs. Neugebauer 

Universität zu Köln 

Institut für Informatik 

Pohligstr. 1 

D-50969 Köln 

Germany 

sat-workshop@informatik.uni-koeln.de 

Proceedings 

Selected papers from the talks to be presented at the workshop will be published in 

a special issue of em Discrete Applied Mathematics (J. Franco, G. Gallo, H. Kleine 

Büning, E. Speckenmeyer, eds.) after a refereeing process following the high standards 

of the journal. 
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Postscript files, dvi files or hard copy will be accepted for contribution with the first 

two preferred. 

Electronic versions should be emailed to sat-workshop@informatik.uni-koeln.de. 
Hard copy versions should be sent to Mrs. Neugebauer at the contact address above. 
Submissions to the special issue should be ready before 

April 17, 1996 
In order to speed up the refereeing process submission of your paper as early as 

possible is highly recommended! 

Abstracts 
A Technical Report on the workshop will be distributed at Siena. All participants 
are expected to send extended abstracts or full papers of no more than 10 pages to 
E. Speckenmeyer at the contact address above before 

March 25, 1996 
Electronic version in dvi or postscript form are preferred and should be sent to 
sat-workshop@informatik.uni-koeln.de 

Accommodation/Cost 

All the rooms in the conference center Certosa have been reserved for the time of the 

workshop: 

There are two conference rooms with projectors. 

20 single, 11 double rooms, and 4 double rooms with one queen bed. 

Price list (Italian lire, Lit) in 1995: 

single double 
full 
half 
ace. 

84.000 
75.000 
70.000 

138.000 
120.000 
110.000 

Prices may increase by 5%, where full accommodation includes breakfast, lunch and 
dinner; half accommodation includes breakfast, lunch or dinner; accommodation in- 

cludes breakfast, only. 
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Current exchange rate:  $1 US is approximately 1600 Lit., 1 DM is approximately 
1114 Lit. 

Reservations should be made via spera@sivax.unisi.it before March 1, 1996. 

In case you can't attend the workshop for certain reasons, please send a short email 
to sat-workshop@informatik.uni-koeln.de. 

Address of Conference Center 

Certosa di Pontignano 
Universita' degli Studi di Siena 

53010 Pontignano, Siena 

tel:+39-577-356851 / fax:+39-577-356669 

Travel Information 
We intend to organize a bus transfer from the Siena train station to the Certosa. In 
order to arrange the transport, please let us know, whether you plan to use the bus, 
and when you will arrive and leave. If desired we will help you to find out the best 
connection from your city of arrival in Italy to Siena. 

Getting to Siena 

Closest airports are Pisa and Firenze. 

From Pisa take the train from the airport to Empoli then change to get the con- 
necting train to Siena (approximate time 1 h:45 min - including the waiting time in 
Empoli). 

From Firenze take a bus or taxi from the airport to Firenze train station "Santa 
Maria Novella" and get a train to Siena there (the train takes 1 h:35 min). 

Train: Firenze - Siena (extract) 

Depart Firenze Arrival Empoli Depart Empoli Arrival Siena 
9.20 h 9.55 h 9.58 h 10.50 h 
11.20 h 11.55 h 11.59 h 13.05 h 
14.13 h 14.42 h 14.43 h 15.33 h 
16.05 h 16.31 h 16.36 h 17.32 h 
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Alternatively: Go from the airport to the bus station "Sita", which is located near 
the train station and from there take a bus "Rapida" to Siena San Domenico, which 
takes 1 h:15 min. (The second connection is recommanded). 

From Milano 

Take an InterCity train to Firenze and the connection to Siena (InterCity train 
requires extra charge). 

Train: Milano - Siena (extract) 

Depart Milano Arrival Firenze Depart Firenze Arrival Siena 
IC 8.00 h 10.51 h 11.20 h 13.05 h 
IC 10.00 h 12.51 h 13.25 h 15.05 h 
IC 14.00 h 16.51 h 17.10 h 18.33 h 
IC 15.00 h 17.51 h 18.20 h 19.55 h 

There are also trains at 11.00 a.m. and 12.00 a.m. You can also take a bus. 

From Rome 

Take a train to Chiusi - Chianciano Terme and then the connection to Siena.  The 
following contains an extract of the schedule: 

Train: Rome - Siena (extract) 

Depart Rom Termini Arrival Chiusi Depart Chiusi Arrival Siena 
IC 8.30 h 10.11 h 10.40 h 11.50 h 
IC 9.20 h 10.34 h 10.40 h 11.50 h 
IC 13.50 h 15.21 h 15.26 h 16.45 h 
IC 15.20 h 16.43 h 16.50 h 18.08 h 

17.50 h 19.13 h 19.18 h 20.30 h 

From Siena to Pontignano 

There is a regular Bus from Siena centre to Pontignano. 
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Bus 
Bus 
Bus 
Bus 
Bus 

Bus: Siena centre - Pontignano 

Depart Siena (piazza Gramsci) 
06.50 h 
08.00 h 
09.00 h 
13.10 h 
13.45 h 

Arrival Pontignano 
07.10 h 
08.20 h 
09.20 h 
13.30 h 
14.05 h 

Days 
(Mon-Fri) 
(Mon-Fri) 

(Wed) 
(Mon-Fri) 
(Mon-Fri) 

Bus: Siena centre - Pontignano (cont) 

Depart Siena (piazza Gramsci) Arrival Pontignano Days 
Bus 14.30 h 14.50 h (Sun) 
Bus 15.30 h 15.50 h (Mon-Fri) 
Bus 18.35 h 18.55 h (Mon-Fri) 
Bus 19.30 h 19.50 h (Sun) 
Bus 20.10 h 20.30 h (Mon-Fri) 

By car from Milano 

Take the Autostrada A 1 to Firenze Certosa and then follow the signs to Siena. 

By car from Rome 

Take the Autostrada (north) to Firenze, leave the Autostrada in Valdichiana. Then 
follow the signs to Siena. 
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Participants, SAT Workshop Siena 1996 
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Workshop On The Satisfiability Problem 

April 29 - May 3, 1996 
Siena, Italy 
 Program   

Monday, 29.04.96 

09.45 - 10.00    Opening Address 
10.00 - 10.45    Thomas Eiter, Toshihide Ibaraki, Kazuhisa Makino 

On Satisfiability of Partially Defined Double and Bidual Horn Functions 

10.45 - 11.15    Coffee Break 
11.15 - 12.00    Paul Purdom 

Probe Order Backtracking 
12.00 - 12.45    Hans Kleine Büning, Theodor Lettmenn 

Resolution Remains Hard Under Equivalence 

12.45 - 14.30    Lunch 
14.30 - 15.15    Alasdair Urquhart 

The Symmetry Rule in Propositional Logic 

20.00 Dinner 

Tuesday, 30.04.96 

9.15 - 10.00      Peter Heusch, Marc-Andre Lemburg, Ewald Speckenmeyer 
Complexity Results of Subclasses of the Pure Implicational Calculus 

10.00 - 10.45    John Franco, Judy Goldsmith, John Schlipf, 
Ewald Speckenmeyer, R. Swaminathan 
An Algorithm for the class of Pure Implicational Formulas 

10.45 - 11.15    Coffee Break 
11.15-12.00    Jinchang Wang 

Testing Propositional Satisfiability by Using Binary Trees 
12.00-12.45    Ingo Schiermeyer 

Pure Literal Look Ahead: An 0(1.479") 3-Satisfiability Algorithm 

12.45 - 14.30    Lunch 
14.30 - 15.15    Allen Van Gelder, Fumiaki Kamiya 

Lemma and Cut Strategies for Two-Sided Propositional Resolution 

15.15-16.00    Oliver Kullmann 
Blocked Clauses; Their Use for SAT Decision, And An Analysis of 
Their Strength 

20.00 Dinner   
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Wednesday, 01.05.96 

09.15 - 10.00    Hans Kleine Büning, Theodor Lettmann 
Closure Under Replacements Versus Run Time of the Davis-Putnam 
Algorithms and Distribution of Satisfiable Formulas 

10.00 - 10.45    Hans Van Maaren 
Discriminative Properties of the Smooth Convex Quadratic 
Approximation of a 3-SAT Problem 

10.45 - 11.15    Coffee Break 
11.15 - 12.00    Jun Gu 

Multi-SAT Algorithm 
12.00 - 12.45    Marco Protassi 

MAX-SAT and the Class APX 

Thursday, 02.05.96 

09.15 - 10.00    Paolo Nobili, Antonio Sassano 
Strengthening Lagrangian Bounds for the MAX-SAT Problem 

10.00 - 10.45    Giorgio Gallo, C. Gentile, D. Pretolani 
MAX Horn SAT and Directed Hypergraphs: Algorithmic 
Enhancements and Easy Cases 

10.45 - 11.15    Coffee Break 
11.15 - 12.00    Roberto Battiti, Marco Protassi 

Reactive Search: A History-Based Heuristic for MAX-SAT 
12.00 - 12.45    Endre Boros 

On Maximum Renamable Horn Sub-CNFs 
12.45 - 14.30    Lunch 
14.30 - 15.15    Andreas Goerdt 

Probability of Satisfiability of Random 2-SAT Instances with 
Quantification 

15.15 - 16.00    David Mitchell 
Toward an Adequate SAT Algorithm  

Friday, 03.05.96 

10.00 - 11.00 Open Problems I 
11.00 - 11.30 Coffee Break 
11.30 - 12.30 Open Problems II 


